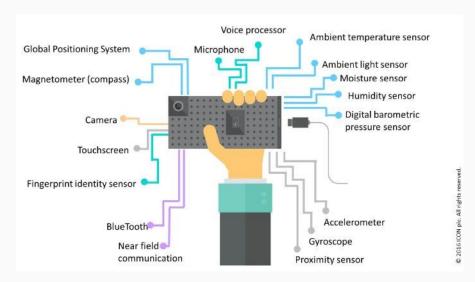


Smart participatory networks

Radu-Ioan Ciobanu

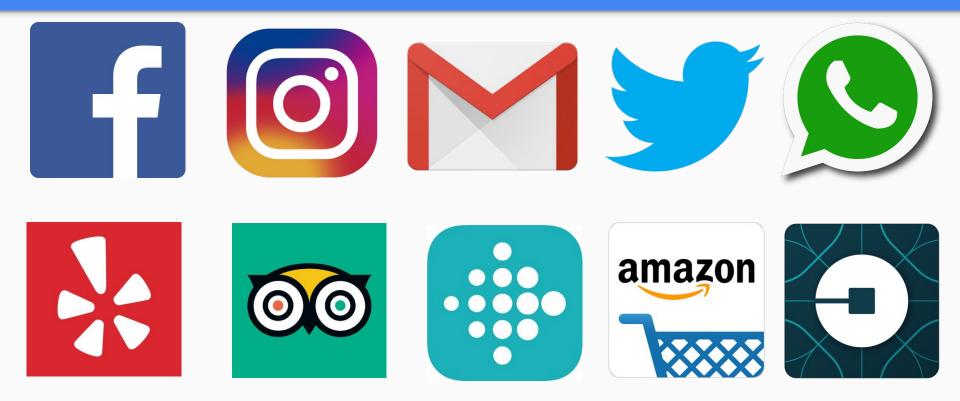
Faculty of Automatic Control and Computers
University Politehnica of Bucharest
radu.ciobanu@cs.pub.ro

Introduction


Introduction

About our organization

- founded in 1818, University Politehnica of Bucharest is the oldest and most prestigious technical university in Romania
- UPB offers B.Sc., M.Sc., and Ph.D. programmes in 17 fields of science and engineering to over 25,000 students
- the University houses 37 Research Centres
- pervasive and mobile services lab
- http://www.upb.ro/en/
- http://acs.pub.ro/en/

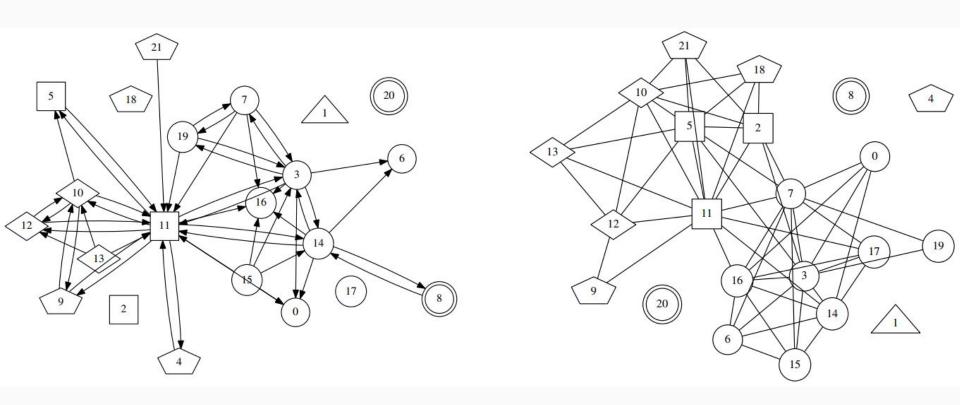

What can we do with a smartphone?

Smartphones collect a large amount of information about their users' status...

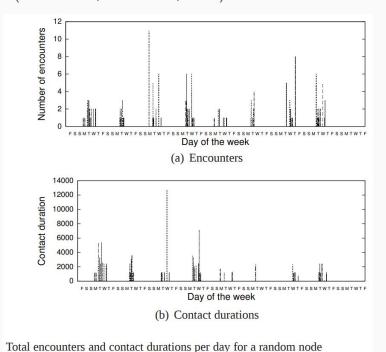
What can we do with a smartphone? (2)

... but also about their preferences and interactions.

A socially-aware world

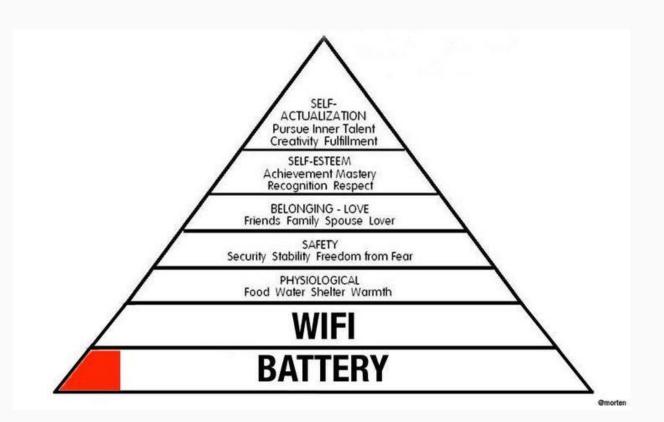

- Human mobility and behavior can be deduced from online and offline social networks interactions
- Mobility traces
 - o UPB 2011¹
 - Android application (Social Tracer)
 - Bluetooth
 - 35 days
 - 22 participants (students and faculty members)
 - UPB 2012²
 - Android application (HYCCUPS Tracer)
 - Bluetooth and AllJoyn (Wi-Fi)
 - 64 days
 - 58 participants (students and faculty members)
 - Contain social information and interests data

¹http://crawdad.org/upb/mobility2011/20120618/2http://crawdad.org/upb/hyccups/20161017/


A socially-aware world (2)

Offline vs. online communities

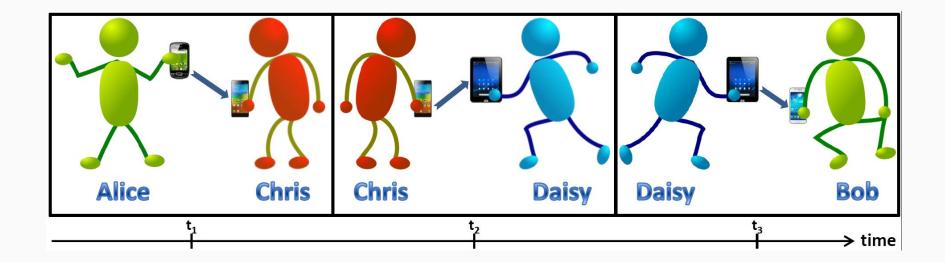
Towards a network of opportunities


- Social grouping information can be used to predict node behavior
- Other context data can also be employed (interests, location, etc.)

Chi-squared test results Chi-squared test case (a) Chi-squared Correct ____ Prediction test results 105 Prediction test case (b) Prediction success

Chi-squared test results and prediction success of the Poisson distribution; for the chi-squared tests, datasets 1, 2 and 3 are computed using the total number of encounters and varying the max likelihood (1 – for the entire experiment, 2 – per weekday, 3 – per hour of a day of the week), while datasets 4, 5 and 6 are computed using unique encounters; for the prediction success, datasets 1 and 2 are computed using the total number of encounters (1 – the next to last week, 2 – the last week) and datasets 3 and 4 are computed using unique encounters

Motivation


Motivation (2)

- Mobile devices constantly generate large amounts of data
 - they do not necessarily have the capabilities of processing all data themselves
 - uploading to the Cloud can prove costly (in terms of battery, data plan, etc.)
 - what if devices in close range can help with the processing?
 - what if data can be aggregated with information from close-range devices?
- Mobile devices also constantly require information and computations from the Cloud
 - costly to communicate back and forth with the Cloud
 - what if the required data is already close at hand?
 - what if somebody else nearby can help with the processing?

Opportunistic networks

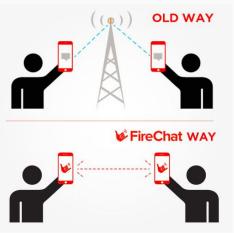
Definition

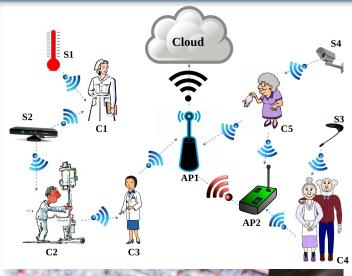
- Natural evolution of **MANETs**, where most of the nodes are **mobile wireless devices**
- Composing nodes have no knowledge of the shape of the network when they join it
- Follow the store-carry-and-forward paradigm
- Based on node altruism

Support technologies

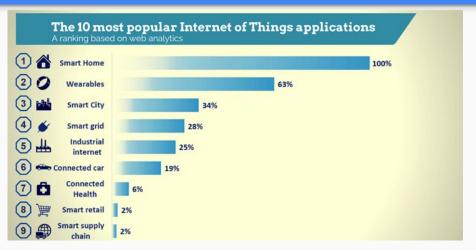
- Communication through close-range protocols
- No wireless or mobile broadband connection

Metric	Bluetooth	BT Smart	NFC	ZigBee	LoRa	Wi-Fi Direct	Wi-Fi	3G	4G
Infra- structure	No	No	No	No	Yes	No	Yes	Yes	Yes
Max range (m)	100	50	0.2	100	2200	200	100	1000+	1000+
Speed (Mbps)	2.1	1	0.4	0.25	0.05	250	600	28	300
Power	1	0.05	0.05	0.33	0.05	33	33	16	20
Security	WPA2	AES	N/A	AES	AES	WPA2	WPA2	KASUMI	SNOW 3G

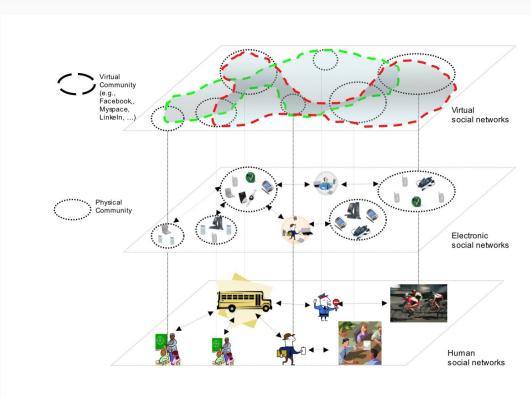

Use cases



Use cases (2)



The Internet of Things

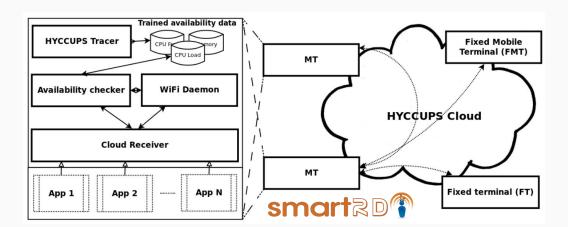

- Inter-networking of
 - physical devices
 - vehicles
 - buildings
 - o items embedded with
 - electronics
 - software
 - sensors
 - actuators
 - network connectivity, etc.

- Offers advanced connectivity of devices, systems, and services beyond machine-to-machine (M2M) communications
- Covers a variety of protocols, domains, and applications
- Generates large amounts of data from diverse locations
- There is a necessity for quick aggregation of the data, and an increase in the need to index,
 store, and process such data more effectively

Design paradigms

- Epidemic routing is too costly
- Topological information is not precise at all, it must be complemented with context information
- Exploit high-level context information to infer user behaviour
- From network of physical devices to network of people

Challenges


- Lack of connectivity leads to lack of end-to-end paths
 - Select next hop by making informed decisions using context data (contact history, social information, location, etc.)
 - ONSIDE OpportuNistic Socially-aware and Interest-based DissEmination
- Congestion and traffic overhead lead to higher energy consumption
 - Choose next hops that have higher chances of delivering data than other nodes (predict node behavior)
 - SPRINT Social PRediction-based routing in opportunistic NeTworks

Challenges (2)

- Long and variable delay, asymmetric data rates, lack of reliability
 - Send data on multiple paths
- Lack of privacy and security
 - Use trust and reputation mechanisms, encrypt data
 - SENSE, SPRINT-SELF
- Nodes only have locally collected knowledge
 - Spread data between nodes through gossiping
- Achieve real "mobile computing" without the need for a connected network

Looking to the future

- Ubiquitous computing framework which offers smartphone devices the opportunity to collaborate over high-speed wireless networks in a distributed and transparent manner
- Use smartphones as both the computing resources, but also as the clients in a hybrid cloud
- Employ a contextual search method to determine if a workload should run remotely or locally
- Offload the current task to the best candidate in the mobile cloud as to reduce the power consumption while preserving the quality of experience

Thank you!

radu.ciobanu@cs.pub.ro