
iMagine
by Teemu Kinnunen, Jukka Lankinen and Sanaz Ahmadi

Introduction
Pictures are so much valuable to its owners since they all meant to be life time and supposed
to remain the memory of great moments. These days, technology has advanced and people are
more technology oriented than the last decades. Picturing different moments of life has become
an interesting task. People own smart phones and other devices for capturing pictures. Therefore,
managing, and organizing huge amounts of images has the first priority. Particularly, people
from every corner of this world are trying to organize and manage their images and find as
efficient storage as possible in order to adequately store their images. Therefore, with iMagine,
we wanted to help and offer people the effective and efficient way of organizing their image
collections. Images are first synced across multiple devices using a server. Furthermore, the
server also categorizes images based on visual information.

Purpose and Idea
The purpose of iMagine is to offer a service to people in order to manage, organize, and categorized their
images regardless of the number of images and the size. iMagine team has noticed and realized that,
people own large numbers of images in their devices (Mobile phones, PCs, Laptops, External hard drives,
and etc). In most cases, people are willing to easily transfer their images from their laptops to their mobile
phones and vice versa. Besides, they are willing to have as safe storage as possible. Therefore, image
synchronization between different devices is illustrated in Fig. 1. The idea is that people are able to access
to their image collection from any device that has iMagine. Therefore, iMagine, with its large capacity of
storage, high demand, and quality of services, is offering this service to people. People are then able to
organize, manage, and categorized their images by iMagine.

Figure 1: Image synchronization across different devices

Implementation
Implementation had two parts: the communication part between the server and the client and another
which presented the data provided by the server in visual manner. A functional application requires
Internet connection to sync between the server and clients (such as phones and laptops). The server does
all the computing needed for finding similar images for easier browsing. To group visually similar images
together we used the Self-organizing map and bag-of-features model which was presented in a paper by
Kinnunen et al. [1].

Client

The client resizes (downsamples) the images, sends them to the server and shows groups of similar
images. In the client, we had three different views: Login screen (SettingsView), Main view (StackView)
and image view (ImageView). Instead of using Qt Creator to design these views, we implemented user
interfaces by programming them. We chose this approach since the user interface is very simple, but
dynamic. Thus, it was more convenient to implement UI by programming. In Fig. 5, we show the class
diagram of iMagine client application. In Qt, events are replaced with signals and slots. Thus every user
interaction and network event causes a signal that can be used to call functions.

In the Log In view (SettingsView), we used grid layout to divide screen into 4 x 2 grid. In the Log in view,
we ask for a username, password and directory where images are stored at. When user click ‘Log in’
button, all the given information is stored in the user data widget which stores all the information on the
disk (ImageView::saveSettings()). Therefore, the information is always available after it is given once.
It is very convenient for the user since he/she does not need to give information more than once. After
user information is stored, the application emits a new submitted() signal to the MainWindow which tells
that user information is given and user would like to log in to the server. Screenshot of the Log In view is
shown in Fig. 2.

Figure 2: Log In view (SettingsView)

MainWindow catches the submitted()-signal and processes the user information and tries to log user in.
After user is successfully logged in the system. The application synchronizes images from the server and
to the server. The image synchronization process and communication protocol is illustrated in Fig. 6.
While the client and server are synchronizing images, we show a progress bar, since it can take a while to
download and upload many images. After the images, image lists and image stack lists are synchronized,
the application loads MainView widget for the Main View. In the Main View, we use a QScrollArea
widget that covers the whole screen. Inside the QScrollArea widget, we have a grid layout widget. Inside

each cell, we have an image stack widget that we made. Image stack information is acquired from the
server. The server gives a stack file where each stack is on a separate row. So it is easy to build an image
stacks for the main view and image from the stack file. Image stack widget is inherited from QWidget
and it uses QPixmaps to show a list of stacked images. First we paint the bottom image and then we paint
an image that is on top of the first image and then the last image on the top of two first images. We show
three or less images, since otherwise it becomes very confusing we are aiming at simple UI. When user
clicks one of the image stack widgets, the application will show the images of the stack in the Image
view. In practice, a mouse click from the user emits a stackClicked(stackid) signal which tells that one
of the stacks have been clicked. It also gives id for the specific stack so the system can display the images
of the correct stack in the Image View. The MainView captures stackClicked(stackid) signal and changes
widget to the ImageView widget. Screenshot of the Main View is shown in Fig. 3.

Figure 3: A screenshot of MainView showing image stacks.

In the Image View, we show the first image of the stack at first and then the user can browse the rest of
the images in the stack using left and right buttons in the view. Images are ordered in the stack. The top
most image in the stack is the most representative image (the image with less error). In the Image view,
we use grid layout to divide the view into 2 x 3. On the left, we have a QPushButton to display images
on the top of the stack and on the right we have QPushButton to show images on the bottom of the stack.
In practice, these two buttons emit signals which call the functions to decrease (if possible) or increase (if
possible) the value of the current image stack index. Two columns in the middle of the grid are reserved
for the current image to use most of the screen area to display the image. To display the current image,
we used QLabel and QPixmap. In the bottom left corner, we have a button that emits a exited() signal
to the MainWindow which changes current view widget back to the MainView widget. A screenshot of
ImageView is shown in Fig. 4.

Figure 4: A screenshot of ImageView.

In Fig. 5, we show the central classes of our iMagine implementation. It also shows some of the most
importan Qt-classes that we have been using.

Figure 5: Class diagram for the client

Client-Server Protocol

Fig. 6 describes communication protocol between the client (a smart phone or a computer) and the server.

Figure 6: A simple example of how the protocol behaves.

An example of the protocol can be seen in Figure 6. Here a presumable client connects to Server with
Login command with a username and a password hashed with MD5. All the commands sent to the server
are done with HTTP POST messages. These messages are then replied with either data (such as lists or
images) or a simple success/fail message.

To sync, Client sends a GETFILELIST message which is then replied a filelist. These files are then
fetched from the server with GETFILE one by another. The server responds with either data or with an
error message. In some cases user has added new images on the client side so these images are then sent
to the server with PUTFILE command.

The galleries are then constructed by using an image list file provided by the server with
GETSIMILARLIST command. This file has a N number of filenames on each line corresponding to a
certain image stack in the Client.

References

[1] Teemu Kinnunen, Joni-Kristian Kämäräinen, Lasse Lensu, Heikki Kälviäinen, International

Conference on Pattern Recognition, Unsupervised visual object categorisation via self-organisation,
(2010).

